DNA Damage and its Enzymatic Repair : Path toward a Preservation of Genetic Information Molecular Dynamics Simulation

■ 開発者or連絡先

M. Pinak¹, J. Kotulic Bunta¹, H. Fujimoto², A. Laaksonen³, Y. Hoshi¹, T. Nemoto⁴, FUJITSU NAGANO SYSTEMS, Ltd., HITACHI, Ltd.

¹JAEA, ²NIID, ³Stockholm University, ⁴RIST

■ 概要

- □ ionizing radiation and oxidative products of cell metabolism damage DNA and cause mutations and chromosomal aberrations in cells and organisms;
- recognition of damage is first step of repair during which repair enzyme recognizes lesion and forms stabile DNAenzyme complex;
- presented work shows results of molecular dynamics simulation of two DNA lesions (8-oxoguanine (8-oxoG) and apurinic/apyrimidinic (AP) site), either as single or multiple lesion, and their recognition by repair enzyme;

■ アルゴリズム

- □ AMBER 7, molecular dynamics (MD) code;
- \Box all atoms simulation;
- □ GAUSSIAN 03, *ab initio* calculations;
- □ F-BMVS FUJITSU Bio-Molecular Visualization Software;
- Hi-PATS HITACHI Parallel Application Tracking and Steering (visualization software)

■ 計算規模

- □ simulated system size several 100,000 atoms;
- □ real biological simulated time several nanoseconds;

■どんなことが期待されるか?

- □ to identify significant structural and energetical changes that may facilitate the onset of entire repair process;
- □ to describe molecular changes in their dynamical scale that are undergoing prior and upon recognition of lesion;
- □ to determine the role of electrostatic interaction between DNA damage and active site of enzyme in recognition;
- □ theoretically propose and describe the most probable enzymatic repair pathway;

次世代スーパーコンピューティング・シンポジウム2006